Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python

Book Description

Implement natural language processing applications with using a problem-solution approach. This book has numerous exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic , text summarization, text generation, entity extraction, and sentiment analysis.

Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced . You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of and deep learning in natural language processing.

By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient.

What You Will Learn

  • Apply techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more
  • Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques.
  • Identify machine learning and deep learning techniques for natural language processing and natural language generation problems 

Who This Book Is For

Data scientists who want to refresh and learn various concepts of natural language processing through coding exercises.

Book Details

  • Title: Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python
  • Author: ,
  • Length: 234 pages
  • Edition: 1st ed.
  • Language: English
  • Publisher:
  • Publication Date: 2019-03-27
  • ISBN-10: 1484242661
  • ISBN-13: 9781484242667
File HostFree Download LinkFormatSize (MB)Upload Date
UsersCloud Click to downloadTrue PDF, EPUB901/31/2019
How to Download? Report Dead Links & Get a Copy

Leave a Reply